翻訳と辞書
Words near each other
・ Cartesian circle
・ Cartesian closed category
・ Cartesian coordinate robot
・ Cartesian coordinate system
・ Cartesian diver
・ Cartesian doubt
・ Cartesian Dreams
・ Cartesian linguistics
・ Cartesian materialism
・ Cartesian Meditations
・ Cartesian monoid
・ Cartesian monoidal category
・ Cartesian Other
・ Cartesian oval
・ Cartesian Perceptual Compression
Cartesian product
・ Cartesian product of graphs
・ Cartesian Reflections
・ Cartesian Self
・ Cartesian skyscraper
・ Cartesian tensor
・ Cartesian theater
・ Cartesian tree
・ Cartesianism
・ Cartesio Oktató és Szolgáltató bt
・ Cartha DeLoach
・ Cartha Doyle
・ Cartha Queens Park RFC
・ Carthade
・ Carthage


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Cartesian product : ウィキペディア英語版
Cartesian product

In mathematics, a Cartesian product is a mathematical operation which returns a set (or product set or simply product) from multiple sets. That is, for sets ''A'' and ''B'', the Cartesian product is the set of all ordered pairs where and . Products can be specified using set-builder notation, e.g.
:A\times B = \.〔Warner, S: ''Modern Algebra'', page 6. Dover Press, 1990.〕
A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form .
More generally, a Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, can be represented by an array of ''n'' dimensions, where each element is an ''n''-tuple. An ordered pair is a 2-tuple or couple.
The Cartesian product is named after René Descartes,〔cartesian. (2009). In Merriam-Webster Online Dictionary. Retrieved December 1, 2009, from http://www.merriam-webster.com/dictionary/cartesian〕 whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product.
== Examples ==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Cartesian product」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.